Topic              Discuss contents of paper:
A Review and Aspects of High Altitude Wind Power Generation                 
SeePaper
M. Uma Mahesh, Ayyarao SLV Tummala, and Ravikiran Inapakurthi
International Conference on Trends and Advanced Research in Green Energy Technologies, ICTARGET-2017’, 30th & 31st March, 2017

Send AWE notes and topic replies to editor@upperwindpower.com
Dec. 2, 2019                      Joe Faust   discussing the topic paper:
  • The paper's term of choice: HAWES high altitude wind energy systems.
  • "Section-II discusses types of HAWES i.e. ground based generation system and fly based generation system"
  • " Due to these reasons, harnessing the wind energy at high  altitudes is at  the nascent stages restricting it to the laboratories."  [Early 2017 paper]
Reference stated for the paper:
REFERENCES  

[1] J.  Adhikari  and  S.  K.  Panda,  “Generation  and Transmission  of  Electrical  Energy  in  High-Altitude Wind Power Generating System,” IEEE J. Emerg. Sel. Top. Power Electron., vol. 3, no. 2, pp. 459–470, Jun. 2015.

[2] E. Lunney, M. Ban, N. Duic, and A. Foley, “A state-of-the-art   review   and   feasibility   analysis   of   high altitude  wind  power  in  Northern  Ireland,” Renew. Sustain. Energy Rev., vol. 68, pp. 899–911, 2017.

[3] A. Cherubini, A. Papini, R. Vertechy, and M. Fontana, “Airborne  Wind  Energy  Systems:  A  review  of  the technologies,” Renew.  Sustain.  Energy  Rev.,  vol.  51, pp. 1461–1476, 2015.

[4] A.  Millane,  H.  Hesse,  T.  A.  Wood,  and  R.  S.  Smith, “Range-inertial  estimation for airborne wind energy,” in Proceedings  of  the  IEEE  Conference  on  Decision and Control, 2016.

[5] B.  Lansdorp  and  W.  J.  Ockels,  “Comparison  of concepts for high-altitude wind energy generation with ground  based  generator,”  in NRE  2005  Conference, 2005.

[6] A. K. Mondal, S. Mondal, V. Devalla, P. Sharma, and M.  K.  Gupta,  “Advances  in  floating  aerogenerators: Present status and future,” Int. J. Precis. Eng. Manuf., vol. 17, no. 11, pp. 1555–1568, 2016.

[7] I. Argatov and R. Silvennoinen, “Energy conversion efficiency  of  the  pumping  kite  wind  generator,” Renew. Energy, vol. 35, no. 5, pp. 1052–1060, 2010. [8] M. Canale, L. Fagiano, and M. Milanese, “Power kites for  wind  energy  generation:  Fast  predictive  control  of tethered airfoils,” IEEE Control Syst. Mag., 2007.

[9] M. Canale, L. Fagiano, M. Milanese, and M. Ippolito, “KiteGen  project:  Control  as  key  technology  for  a quantum  leap  in  wind  energy  generators,”  in Proceedings   of   the   American   Control   Conference, 2007.

[10] L.    Fagiano,    M.    Milanese,    V.    Razza,    and M. Bonansone,   “High-altitude Wind energy for sustainable marine transportation,” IEEE Trans. Intell. Transp. Syst., 2012.

[11] J.   Adhikari,   I.   V.   Prasanna,   and   S.   K.   Panda, “Maximum power-point tracking of high altitude wind power  generating  system  using optimal  vector  control technique,”  in Proceedings    of    the   International Conference  on  Power  Electronics  and  Drive  Systems, 2015.

[12] K.  Sanno  and  K.  V.  S.  Rao,  “Estimation  of  wind power extraction from kites flying at high altitudes,” in Proceedings  of  2014  1st  International  Conference  on Non Conventional Energy: Search for Clean and Safe Energy, ICONCE 2014, 2014.

[13] L. Perković, P. Silva, M. Ban, N. Kranjčević, and N. Duić, “Harvesting high altitude wind energy for power production:  The  concept  based  on Magnus’  effect,” Appl. Energy, vol. 101, pp. 151–160, Jan. 2013.

[14] J.     W.     Kolar et     al.,  “Conceptualization  and multiobjective  optimization  of  the  electric  system  of an airborne wind turbine,” IEEE  J.  Emerg.  Sel.  Top. Power Electron., 2013.

[15] L.  Ramesh,  A.  Nalini,  E.  S.  Percis,  and  Shadhik, “Investigation  of  harnessing  high  altitude  tethered rotorcraft  wind  systems,”  in IET    Chennai    3rd International  Conference  on  Sustainable  Energy  and Intelligent  Systems  (SEISCON  2012),  2012,  pp.  362–367.

[16] J.  Adhikari  and  S.  K.  Panda,  “Generation  and transmission,” IEEE   J.   Emerg.   Sel.   Top.   Power Electron., vol. 3, no. 2, p. 459–470 of electrical energy in high–altitude wind, 2015.

[17] G. Shrestha, H. Polinder, and J. A. Ferreira, “Scaling laws  for  direct  drive  generators  in  wind  turbines,” 2009  IEEE  Int.  Electr.  Mach.  Drives  Conf.  IEMDC ’09, pp. 797–803, 2009.

[18] H.  Polinder,  F.  F.  A.  Van  Der  Pijl,  G.  J.  De  Vilder, and  P.  J.  Tavner,  “Comparison  of  direct-drive  and geared  generator  concepts  for  wind  turbines,” IEEE Trans.  Energy  Convers.,  vol.  21,  no.  3,  pp.  725–733, 2006.

[19]  A. Parviainen,   M.   Niemela,   J.   Pyrhonen,   and   J. Mantere,  “Performance  comparison  between  low-speed   axial-flux   and   radial-flux   permanent-magnet machines including mechanical constraints,” IEEE Int. Conf.  Electr.  Mach.  Drives,  2005.,  pp.  1695–1702, 2005.

[20] T.  Wang  and  Q.  Wang,  “Optimization  design  of  a permanent    magnet    synchronous    generator    for    a potential  energy  recovery  system,” IEEE   Trans. Energy Convers., vol. 27, no. 4, pp. 856–863, 2012.

[21] P.     Ragot,     M.     Markovic,     and     Y.     Perriard, “Optimization  of  electric  motor  for  a  solar  airplane application,” IEEE  Trans.  Ind.  Appl.,  vol.  42,  no.  4, pp. 1053–1061, 2006.

[22] D. Pavković, M. Hoić, J. Deur, and J. Petrić, “Energy storage  systems  sizing  study  for  a  high-altitude  wind energy application,” Energy, 2014.

[23] J.   Adhikari,   S.   K.   Panda,   and   A.   K.   Rathore, “Harnessing high altitude wind power using light gas filled  blimp,”  in IECON   Proceedings   (Industrial Electronics Conference), 2013.

[24] S.  K.  Panda  and  J.  Adhikari,  “Overview  of  High Altitude Wind Energy Harvesting System.”

[25] J.   Adhikari,   A.   K.   Rathore,   and   S.   K.   Panda, “Modelling,  design  and  control  of  grid  connected converter for high altitude wind power application,” in 2014   International   Power   Electronics   Conference (IPEC-Hiroshima   2014 - ECCE   ASIA),   2014,   pp. 1775–1780.

[26] J. Adhikari, A. K. Rathore, and S. K. Panda, “Modular interleaved ZVS current fed isolated DC-DC converter for harvesting high altitude wind power,” in IECON Proceedings    (Industrial    Electronics    Conference), 2013.

[27] J.   Adhikari,   A.   K.   Rathore,   and   S.   K.   Panda, “Comparison  of  ZVS  based  isolated  DC-DC converters for high altitude wind power application,” in 2013  IEEE  Innovative  Smart  Grid  Technologies - Asia, ISGT Asia 2013, 2013.

[28] J.  Adhikari  and  S.  K.  Panda,  “Ground-based  step-down  AC-AC  power  electronic  converter  for  high altitude  wind  energy  harvesting  system,”  in Proceedings,  IECON  2014 - 40th  Annual  Conference of the IEEE Industrial Electronics Society, 2014.

[29] J.  Adhikari,  Prasanna,  G.  Ponraj,  and  S.  K.  Panda, “Power conversion system for low power high altitude wind  power  generating  system,”  in 2015    9th International  Conference  on  Power  Electronics  and ECCE Asia (ICPE-ECCE Asia), 2015, pp. 637–644.

[30] J.   Adhikari,   A.   K.   Rathore,   and   S.   K.   Panda, “Modelling,  Design  and  Control  of  Grid  Connected Converter for High Altitude Wind Power Application.”

[31] P. Williams, B. Lansdorp, and W. Ockesl, “Optimal Crosswind    Towing    and    Power    Generation    with Tethered Kites,” J. Guid. Control. Dyn., vol. 31, no. 1, pp. 81–93, Jan. 2008.

[32] B.  Houska  and  M.  Diehl,  “Robustness  and  stability optimization  of  power  generating  kite  systems  in  a periodic pumping mode,” in Proceedings  of  the  IEEE International   Conference   on   Control   Applications, 2010.

[33] S. Mackertich and T. Das, “A quantitative energy and systems  analysis  framework  for  airborne  wind  energy conversion   using autorotation,”  in 2016   American Control Conference (ACC), 2016, pp. 4996–5001.

[34] A. U. Zgraggen, L. Fagiano, and M. Morari, “Real-Time  Optimization  and  Adaptation  of  the  Crosswind Flight of Tethered Wings for Airborne Wind Energy,” IEEE Trans. Control Syst. Technol., vol. 23, no. 2, pp. 434–448, Mar. 2015.

[35] M. Canale, L. Fagiano, M. Ippolito, and M. Milanese, “Control of tethered airfoils for a new class of wind energy generator,” in Proceedings  of  the  45th  IEEE Conference on Decision and Control, 2006, pp. 4020–4026.

[36] M.  De  Lellis,  R. Saraiva, and A. Trofino, “Turning angle  control  of  power  kites  for  wind  energy,”  in Proceedings of the IEEE Conference on Decision and Control, 2013.

[37] C. Novara, “Sparse set membership identification of nonlinear functions and application to fault detection,” Int.  J.  Adapt.  Control  Signal  Process.,  vol.  30,  no.  2, pp. 206–223, Feb. 2016.

[38] A.  Ilzh÷fer,  B.  Houska,  and  M.  Diehl,  “Nonlinear MPC of kites under varying wind conditions for a new class  of  large-scale  wind  power  generators,” Int.  J. Robust  Nonlinear  Control,  vol.  17,  no.  17,  pp.  1590–1599, Nov. 2007.

[39] L. Fagiano, M. Milanese, and D. Piga, “High-Altitude Wind  Power  Generation,” IEEE    Trans.    Energy Convers., vol. 25, no. 1, pp. 168–180, Mar. 2010.

[40] H. J. Ferreau, B. Houska, K. Geebelen, and M. Diehl, “Real-Time  Control  of  a  Kite-Model  using  an  Auto-Generated  Nonlinear  MPC  Algorithm,” IFAC  Proc. Vol., vol. 44, no. 1, pp. 2488–2493, Jan. 2011.

[41] M. Canale, L. Fagiano, and M. Milanese, “KiteGen: A revolution  in  wind  energy  generation,” Energy,  vol. 34, no. 3, pp. 355–361, Mar. 2009.

[42] C. Novara, L. Fagiano, and M. Milanese, “Direct data-driven inverse control of a power kite for high altitude wind energy conversion,” in 2011  IEEE  International Conference on Control Applications (CCA), 2011, pp. 240–245.

[43] J. H. Baayen and W. J. Ockels, “Tracking control with adaption of kites,” IET  Control  Theory  Appl.,  vol.  6, no. 2, p. 20, 2010.

[44] M. Ahmed, A. Hably, and S. Bacha, “Kite generator system periodic     motion     planning     via     virtual constraints,”  in IECON    Proceedings    (Industrial Electronics Conference), 2013.

[45] C.   Canudas-De-Wit,  “On  the  concept  of  virtual constraints  as  a  tool  for  walking  robot  control  and balancing,” Annu.  Rev.  Control,  vol.  28,  no.  2,  pp. 157–166, 2004.

[46] A.    Shiriaev    and    C.    Canudas-de-Wit,  “Virtual constraints: a  constructive tool for oribital stabilzation of underactuated nonlinear systems,” Pers.  Commun., vol. 50, no. 1, pp. 1–12, 2003.

[47] N.  Rontsis,  S.  Costello,  I.  Lymperopoulos,  and  C.  N. Jones, “Improved path following for kites with input delay compensation,” in 2015  54th  IEEE  Conference on Decision and Control (CDC), 2015, pp. 656–663.

[48] Haocheng  Li,  D.  J.  Olinger,  and  M.  A.  Demetriou, “Attitude tracking control of an Airborne Wind Energy system,”  in 2015   European   Control   Conference (ECC), 2015, pp. 1510–1515.

[49] C. Jehle and R. Schmehl, “Applied Tracking Control for Kite Power Systems,” J. Guid. Control.  Dyn., vol. 37, no. 4, pp. 1211–1222, Jul. 2014.

[50] L. Fagiano,   A.   U.   Zgraggen,   M.  Morari,  and  M. Khammash, “Automatic Crosswind Flight of Tethered Wings  for  Airborne  Wind  Energy:  Modeling,  Control Design,  and  Experimental  Results,” IEEE   Trans. Control Syst. Technol., vol. 22, no. 4, 2014.

[51] U.  Fechner  and R. Schmehl, “Flight path control of kite power systems in a turbulent wind environment,” in Proceedings  of  the  American  Control  Conference, 2016.

[52] A.  Hably,  R.  Lozano,  M.  Alamir,  and  J.  Dumon, “Observer-based   control   of   a   tethered   wing   wind power  system:  indoor  real-time experiment,” in 2013 American Control Conference, 2013, pp. 3473–3478.

[53] A. Walsh and J. R. Forbes, “Modeling and control of a wind energy harvesting kite with flexible cables,” in 2015  American  Control  Conference  (ACC),  2015,  pp. 2383–2388.

[54] M.  Ahmed,  A.  Hably,  and  S.  Bacha,  “Power maximization of a closed-orbit kite generator system,” in IEEE  Conference  on  Decision  and  Control  and European Control Conference, 2011, pp. 7717–7722.

[55] S.  Costello,  G.  Franšois,  and  D.  Bonvin,  “A Directional  Modifier-Adaptation  Algorithm  for  Real-Time Optimization,” J.  Process  Control,  vol.  39,  pp. 64–76, Mar. 2016.

[56] H. Li, D. J. Olinger, and M. A. Demetriou, “Control of an   airborne   wind   energy   system   using   an   aircraft dynamics  model,”  in Proceedings  of  the  American Control Conference, 2015.

[57] I.   Argatov,   P.   Rautakorpi,   and   R.   Silvennoinen, “Estimation  of  the  mechanical  energy  output  of  the kite wind generator,” Renew.  Energy,  vol.  34,  no.  6, pp. 1525–1532, 2009.

[58] J. Sternberg, B. Houska, and M. Diehl, “A Structure Exploiting    Algorithm    for    Approximate    Robust Optimal Control with Application to Power Generating Kites,” Proc.   Am.   Control   Conf.,   pp.   2250–2255, 2012.

[59] J.  Gillis,  J.  Goos,  K.  Geebelen,  J.  Swevers,  and M. Diehl, “Optimal periodic control of power harvesting tethered  airplanes:  How  to  fly  fast  without  wind  and without  propellor?,”  in 2012    American   Control Conference (ACC), 2012, pp. 2527–2532.

[60] M. S. Ahmed, A. Hably, and S. Bacha, “Kite generator system modeling and grid integration,” IEEE  Trans. Sustain. Energy, vol. 4, no. 4, pp. 968–976, 2013.

[61] C.    Vermillion,    T.    Grunnagle,    R.    Lim,    and    I. Kolmanovsky,  “Model-based     plant     design     and hierarchical   control   of   a   prototype   lighter-than-air wind   energy system,   with   experimental   flight   test results,” IEEE  Trans.  Control  Syst.  Technol.,  vol.  22, no. 2, pp. 531–542, 2014.

[62] L. Fagiano, K. Huynh, B. Bamieh, and M. Khammash, “On  Sensor  Fusion  for  Airborne  Wind  Energy Systems,” IEEE Trans. Control Syst. Technol., vol. 22, no. 3, pp. 930–943, 2013.

[63] L.  Fagiano  and  T.  Marks,  “Design  of  a  small-scale prototype  for  research  in  airborne  wind  energy,” IEEE/ASME  Trans.  Mechatronics,  vol.  20,  no.  1,  pp. 166–177, 2015.

[64] M.  Ahmed,  A.  Hably,  S.  Bacha,  and  A.  Ovalle, “Kite generator  system:  Grid  integration  and  validation,” IECON  Proc.  (Industrial  Electron.  Conf.,  vol.  40th Annua, pp. 2139–2145, 2014.

[65] M.  W.  Isaacs,  J.  B.  Hoagg,  I.  I.  Hussein,  and  D. Olinger,  “Retrospective  cost  adaptive  control  for  a ground tethered  energy  system,” Proc.  IEEE  Conf. Decis. Control, pp. 824–829, 2011.

[66] R.  Lozano,  J.  Dumon,  A.  Hably,  and  M.  Alamir, “Energy  production  control  of  an  experimental  kite system  in  presence  of  wind  gusts,” IEEE  Int.  Conf. Intell. Robot. Syst., pp. 2452–2459, 2013.

[67] Y. Terao and N. Sakagami, “A feasibility study on the ocean  higher  altitude  strong  wind  energy  utilization system,” in OCEANS 2014 - TAIPEI, 2014, pp. 1–7.

[68]  Pragallapati,    VVSMR    Raju,    and    SLV    Ayyarao Tummala. "A new direct torque control for doubly fed induction   generator   for   wind   power   generation." Proceedings of International Conference on Renewable Energy and Sustainable Energy ICRESE'13. 2013.

[69] Alluri,  Hemanth  KR,  Ayyarao  SLV  Tummala,  and  P. V.  Ramanarao.  "Performance  of  the  Wind  Farm  for Various  Faults."  International  Journal  of  Emerging Research    in    Management    &Technology,   vol.   5, (2016).

[70]  https://phys.org/news/2012-07-electricity-air.html