Topic:   Study contents of paper:
A methodology for design, analysis and optimization of a vertical take-off system for rigid-wing airborne wind energy systems
Niels Pynaert, Technische Universiteit Delft
 
"This research is focused on state-of-the-art analysis and review, sizing, design analysis and simulation of different vertical take-off and landing (VTOL) system concepts applicable for airborne wind energy systems (AWES) launch mechanisms."
  • Abstract and option to view online or download     123 pages.
  • https://www.linkedin.com/in/niels-pynaert-282492127/
  • 2020-01-17
  • "to obtain the degree of Master of Science at the Delft University of Technology, to be defended publicly on Friday, January 17, 2020 at 13:00 AM"     [ ] How did the defense go?
  • "knee-sitter"                             [   knee-and-tail sitter  ]
  • "AWE aircraft"
  • "VTOL system mass"
  • "tilt-rotor concept."
  • "tail-sitter"
  • "quad-plane"
  • "target elevation angle"
  • "this research on mass analysis concludes that the knee-sitter concept is the concept of choice for the vertical take-off and landing (VTOL) system concept applicable for airborne wind energy systems (AWE) launch mechanisms."

Send AWE notes and topic replies to editor@upperwindpower.com
? What say we?

Bibliography      
[1] Mirac Aksugur and Gokhan Inalhan. Design methodology of a hybrid propulsion driven electric powered miniature tailsitter unmanned aerial vehicle. Journal of Intelligent and Robotic Systems: Theory and Applications, 57(1-4):505–529, 2010. ISSN 09210296. doi: 10.1007/s10846-009-9368-0.      

[2] C. Ampatis and E. Papadopoulos. Parametric Design and Optimization of Multi-Rotor Aerial Vehi-cles. Springer Optimization and Its Applications, 91(3):1–25, 2014. ISSN 19316836. doi: 10.1007/ 978-3-319-04720-1_1.      

3] Ozlem Armutcuoglu, Mehmet Serif Kavsaoglu, and Ozan Tekinalp. Tilt Duct Vertical Takeoff and Landing Uninhabited Aerial Vehicle Concept Design Study. Journal of Aircraft, 41(2):215–223, 2008. ISSN 0021-8669. doi: 10.2514/1.271.      

4] Florian Bauer, Christoph M. Hackl, Keyue Smedley, and Ralph M. Kennel. Multicopter-Based Launching and Landing of Lift Power Kites. 2016.      

[5] RANDAL W. BEARD and TIMOTHY W. McLAIN. Small Unmanned Aircraft: Theory and Practice.      

[6] Dmitry Bershadsky, Steve Haviland, and Eric N. Johnson. Electric Multirotor UAV Propulsion System Sizing for Performance Prediction and Design Optimization. pages 1–22, 2016. doi: 10.2514/6.2016-0581.      

[7] E. Bontekoe. Up! How to Launch and Retrieve a Tethered Aircraft. Master of Science Thesis, TU Delft, Faculty of Aerospace Engineering, 2010.      

[8] Rieck Burkhard, Ranneberg Maximilion, Candade Ashwin, Bormann Alexander, and Skutnik Stefan. Comparison of Launching Landing Approaches.      

[9] R. W. Jr. Boswinkle C.C. Critzos, H.H. Heyson. Aerodynamic characteristics of NACA 0012 airfoil section at angles of attack from 0 degrees to 180 degrees. 1955.      

[10] D. Cheng, A.C. Charles, S. Srigrarom, and H. Hesse. Morphing Concept for Multirotor UAVs Enabling Sta-bility Augmentation and Multiple-Parcel Delivery. AIAA Science and Technology Forum and Exposition, 2019.      

[11] Antonello Cherubini, Andrea Papini, Rocco Vertechy, and Marco Fontana. Airborne Wind Energy Systems: A review of the technologies. Renewable and Sustainable Energy Reviews, 51:1461–1476, 2015. ISSN 18790690. doi: 10.1016/j.rser.2015.07.053.      

[12] Puspita Triana Dewi, Ghozali Suhariyanto Hadi, Muhammad Ramadhan Kusnaedi, Aris Budiyarto, and Agus Budiyono. Design of Separate Lift and Thrust Hybrid UAV. The Journal of Instrumentation, Automation and Systems, 2(2):45–51, 2018. doi: 10.21535/jias.v2i2.697.      

[13] Moritz Diehl. Airborne Wind Energy : Basic Concepts and Physical Foundations. pages 3–22. doi: 10.1007/978-3-642-39965-7.      

[14] L. Fagiano and S. Schnez. On the take-off of airborne wind energy systems based on rigid wings. Renewable Energy, 107:473–488, 2017. ISSN 18790682. doi: 10.1016/j.renene.2017.02.023.      

[15] L. Fagiano, E. Nguyen-Van, F. Rager, S. Schnez, and C. Ohler. Automatic Take-Off of a Tethered Aircraft for Airborne Wind Energy: Control Design and Experimental Results. IFAC-PapersOnLine, 50(1):11932– 11937, 2017. ISSN 24058963. doi: 10.1016/j.ifacol.2017.08.1456.      

[16] W. Froude. On the Elementary Relation Between Pitch, Slip, and Propulsive Efficiency. 1920.      

[17] Mauro Gatti and Fabrizio Giulietti. Preliminary design analysis methodology for electric multirotor. IFAC Proceedings Volumes (IFAC-PapersOnline), 2(PART 1):58–63, 2013. ISSN 14746670. doi: 10.3182/ 20131120-3-FR-4045.00038.      

[18] K. Geebelen, H. Ahmad, M. Vukov, S. Gros, J. Swevers, and M. Diehl. An experimental test set-up for launch/recovery of an Airborne Wind Energy (AWE) system. pages 4405–4410, 2014. doi: 10.1109/acc. 2012.6315033.      

[19] Licitra Giovanni. Identification and Optimization of an Airborne Wind Energy System. 2018.      
[20] Herman Glauert. Airplane Propellers. In: Aerodynamic Theory. Springer, Berlin, Heidelberg. ISBN 978-3-642-89630-9.      

[21] Jay Gundlach. Designing Unmanned Aircraft Systems: A Comprehensive Approach. 2014.      
[22] Ohad Gur and Aviv Rosen. Optimizing Electric Propulsion Systems for UAVs. (September 2008), 2012.     doi: 10.2514/6.2008-5916.      

[23] M. Hepperle. Electric Flight – Potential and Limitations. Presented at the AVT-209 Workshop on Energy Efficient Aircraft Configurations, Technologies and Concepts of Operation, Sao Josť dos Campos, 2013.      

[24] John H Horlock. Actuator Disk Theory: Discontinuities in Thermo Fluid Dynamics. 1978.      

[25] J.C. van der Vaart E. de Weerdt C.C. de Visser A.A. in ’t veld E. Mooij J.A. Mulder, W.H.J.J. van Staveren.      Flight Dynamics, Lecture notes. Delft University of Technology, 2013.      

[26] Haibo Jiang, Yanru Li, and Zhongqing Cheng. Relations of Lift and Drag Coefficients of Flow around Flat Plate. Trans Tech Publications, Switzerland, 2014. doi: 10.4028/www.scientific.net/AMM.518.161.      

[27] Andrew B. Lambe and Joaquim R. R. A. Martins. Extensions to the design structure matrix for the description of multidisciplinary design, analysis, and optimization processes. Structural and Multidisciplinary Optimization, 46:273–284, 2012. doi: 10.1007/s00158-012-0763-y.      

[28] J. Gordon Leishman. Principles of Helicopter Aerodynamics. Cambridge Aerospace Series, 2002.      

[29] Miles L Loyd. Crosswind Kite Power. Journal of Energy, 4(3):106–111, 1980.      

[30] C.A. Luongo. Next Generation More-Electric Aircraft: A Potential Application for HTS Superconductors.  IEEE Transactions on Applied Superconductivity, vol. 19, no. 3, pp. 1055–1068, 2009.      

[31] Elena Malz, Jonas Koenemann, and Sebastian Gros. A reference model for airborne wind energy systems for optimization and control. 2018.      

[32] B.W. McCormick. Aerodynamics of V/STOL flight. New York, Academic Press.      

[33] Matthew McCrink and James W. Gregory. Blade Element Momentum Modeling of Low-Re Small UAS Electric Propulsion Systems. 33rd AIAA Applied Aerodynamics Conference, (June):1–23, 2015. doi: 10.     2514/6.2015-3296.    URL http://arc.aiaa.org/doi/10.2514/6.2015-3296.      

[34] Koji Muraoka, Noriaki Okada, and Daisuke Kubo. Quad Tilt Wing VTOL UAV: Aerodynamic Characteristics and Prototype Flight. (April): 6–13, 2012. ISSN 2009-1834. doi: 10.2514/6.2009-1834.      

[35] Wayne Ong, Spot Srigrarom, and Henrik Hesse. Design Methodology for Heavy-Lift Unmanned Aerial Vehicles with Coaxial Rotors. 9781624105(January):7–11, 2019. doi: 10.2514/6.2019-2095.      

[36] Ugur Ozdemir, Yucel Orkut, Aktas Aslihan, and Vuruskan Yasin. Design of a commercial hybrid VTOL UAV system Design of a Commercial Hybrid VTOL UAV System. (May 2013), 2016. doi: 10.1007/s10846-013-9900-0.              

[37] Sebastian Rapp and Roland Schmehl. Vertical Takeoff and Landing of Flexible Wing Kite Power Systems.   Journal of Guidance, Control, and Dynamics, 41(11):2386–2400, 2018. ISSN 0731-5090. doi: 10.2514/1.g003535.      

[38] Daniel P. Raymer. Aircraft Design: A Conceptual Approach ( Edition). (AIAA education series), 2006.      

[39] J. Roskam. Airplane design, part v: component weight estimation. Roskam Aviation Corporation, Ottawa, Kansas, page 85, 1985.      

[40] M. K. Rwigema. Propeller Blade Element Momentum Theory with Vortex Wake Deflection. International Congress of the Aeronautical Sciences, pages 1–9, 2010. URL http://www.ewp.rpi.edu/hartford/      
{~}ernesto/S2013/MMEES/Papers/ENERGY/6AlternativeEnergy/McCosker/Rwigema2010.pdf.      
[41] Adnan S. Saeed, Ahmad Bani Younes, Chenxiao Cai, and Guowei Cai. A survey of hybrid Unmanned Aerial Vehicles. Progress in Aerospace Sciences, 98:91–105, 2018. ISSN 03760421. doi: 10.1016/j.paerosci.2018.03.007.      

[42] Watcharapol Saengphet and Chalothorn Thumthae. Conceptual Design of Fixed Wing-VTOL UAV for AED Transport. (December), 2016.      

[43] R. Schmehl. Airborne Wind Energy an introduction to an emerging technology, 2019. URL http://awesco.eu/awe-explained/#presently-pursued-concepts.      

[44] Brian L. Stevens, Frank L. Lewis, and Eric N. Johnson. Modeling and Simulation of Miniature Aerial Vehicles. 2015.  
  
[45] Roland Hugh Stone and K C Wong. Preliminary Design of a Tandem-Wing Tail-Sitter UAV Using Multi-Disciplinary Design Optimisation. International Aerospace Congress, (May):707–720, 1997.      

[46] B Theys and J De Schutter. Parameter selection method and performance assessment for the preliminary design of electrically powered transitioning VTOL UAVs. 2016.      

[47] B. Theys, G. Dimitriadis, P. Hendrick, and J. De Schutter. Experimental and numerical study of micro-aerial-vehicle propeller performance in oblique flow. Journal of Aircraft, 54(3):1076–1084, 2017. ISSN 00218669. doi: 10.2514/1.C033618.      

[48] Maxim Tyan, Nhu Van Nguyen, and Jae-woo Lee.  A Hybrid VTOL-Fixed Wing Electric UAV Sizing Methodology Development. (October), 2016.          

[49] Maxim Tyan, Nhu Van Nguyen, Sangho Kim, and Jae Woo Lee. Comprehensive preliminary sizing/re-sizing method for a fixed wing – VTOL electric UAV. Aerospace Science and Technology, 71, 2017. ISSN 12709638. doi: 10.1016/j.ast.2017.09.008.      

[50] Justin Winslow, Vikram Hrishikeshavan, and Inderjit Chopra. Design Methodology for Small-Scale Un-manned Quadrotors. Journal of Aircraft, (January):1–9, 2017. ISSN 0021-8669. doi: 10.2514/1.c034483.      

[51] M. Zanon, S. Gros, and M. Diehl. Rotational start-up of tethered airplanes based on nonlinear mpc and  mhe.