Topic:   Paper's content:
Adaptive Flight Path Control of Airborne Wind
Energy Systems

Tarek N. Dief, Uwe Fechner, Roland Schmehl, Shigeo Yoshida, Mostafa A. Rushdi
NOT PEER-REVIEWED | Posted: 11 January 2020
Send AWE notes and topic replies to editor@upperwindpower.com

References of the paper:
References 445 1. Ahrens, U.; Diehl, M.; Schmehl, R., Eds. Airborne Wind Energy; Green Energy and Technology, Springer: 446 Berlin Heidelberg, 2013. doi:10.1007/978-3-642-39965-7. 447

2. Cherubini, A.; Papini, A.; Vertechy, R.; Fontana, M. Airborne Wind Energy Systems: A review of the 448 technologies. Renewable and Sustainable Energy Reviews 2015, 51, 1461–1476. doi:10.1016/j.rser.2015.07.053. Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 11 January 2020 27 of 28 449

3. Schmehl, R., Ed. Airborne Wind Energy – Advances in Technology Development and Research; Green Energy 450 and Technology, Springer: Singapore, 2018. doi:10.1007/978-981-10-1947-0. 451

4. Lago, J.; Erhard, M.; Diehl, M. Warping model predictive control for application in control of a real airborne 452 wind energy system. Control Engineering Practice 2018, 78, 65–78. doi:10.1016/j.conengprac.2018.06.008. 453

5. Van der Vlugt, R.; Peschel, J.; Schmehl, R. Design and experimental characterization of a pumping kite 454 power system. In Airborne Wind Energy; Ahrens, U.; Diehl, M.; Schmehl, R., Eds.; Green Energy and 455 Technology, Springer: Berlin Heidelberg, 2013; chapter 23, pp. 403–425. doi:10.1007/978-3-642-39965-7_23. 456

6. Goldstein, L. Airborne wind energy conversion systems with ultra high speed mechanical power transfer. 457 In Airborne Wind Energy; Ahrens, U.; Diehl, M.; Schmehl, R., Eds.; Green Energy and Technology, Springer: 458 Berlin Heidelberg, 2013; chapter 13, pp. 235–247. doi:10.1007/978-3-642-39965-7_13. 459

7. De Wachter, A. Power from the skies: laddermill takes airborne wind energy to new heights. Leonardo 460 Times: Journal of the Society of Aerospace Engineering Students VSV Leonardo da Vinci 2010, pp. 18–20. 461

8. Diehl, M.; Leuthold, R.; Schmehl, R., Eds. The International Airborne Wind Energy Conference 2017: 462 Book of Abstracts, Freiburg, Germany, 2017. University of Freiburg | Delft University of Technology. 463 doi:10.6094/UNIFR/12994. 464

9. Van der Vlugt, R.; Bley, A.; Schmehl, R.; Noom, M. Quasi-steady model of a pumping kite power system. 465 Renewable Energy 2019, 131, 83–99. doi:10.1016/j.renene.2018.07.023. 466

10. Bosch, A.; Schmehl, R.; Tiso, P.; Rixen, D. Dynamic nonlinear aeroelastic model of a kite for power 467 generation. Journal of Guidance, Control and Dynamics 2014, 37, 1426–1436. doi:10.2514/1.G000545. 468

11. Fechner, U.; van der Vlugt, R.; Schreuder, E.; Schmehl, R. Dynamic Model of a Pumping Kite Power System. 469 Renewable Energy 2015, 83, 705–716. doi:10.1016/j.renene.2015.04.028. 470 12. Fechner, U. A Methodology for the Design of Kite-Power Control Systems. PhD thesis, Delft University of 471 Technology, 2016. doi:10.4233/uuid:85efaf4c-9dce-4111-bc91-7171b9da4b77. 472

13. Fechner, U.; Schmehl, R. Flight Path Planning in a Turbulent Wind Environment. In Airborne Wind Energy – 473 Advances in Technology Development and Research; Schmehl, R., Ed.; Green Energy and Technology, Springer: 474 Singapore, 2018; chapter 15, pp. 361–390. doi:10.1007/978-981-10-1947-0_15. 475

14. Breukels, J.; Schmehl, R.; Ockels, W. Aeroelastic Simulation of Flexible Membrane Wings based 476 on Multibody System Dynamics. In Airborne Wind Energy; Ahrens, U.; Diehl, M.; Schmehl, R., 477 Eds.; Green Energy and Technology, Springer: Berlin Heidelberg, 2013; chapter 16, pp. 287–305. 478 doi:10.1007/978-3-642-39965-7_16. 479

15. Bosch, A.; Schmehl, R.; Tiso, P.; Rixen, D. Nonlinear Aeroelasticity, Flight Dynamics and Control 480 of a Flexible Membrane Traction Kite. In Airborne Wind Energy; Ahrens, U.; Diehl, M.; Schmehl, 481 R., Eds.; Green Energy and Technology, Springer: Berlin Heidelberg, 2013; chapter 17, pp. 307–323. 482 doi:10.1007/978-3-642-39965-7_17. 483

16. Oehler, J.; Schmehl, R. Aerodynamic characterization of a soft kite by in situ flow measurement. Wind 484 Energy Science 2019, 4, 1–21. doi:10.5194/wes-4-1-2019. 485

17. Erhard, M.; Strauch, H. Theory and Experimental Validation of a Simple Comprehensible Model of 486 Tethered Kite Dynamics Used for Controller Design. In Airborne Wind Energy; Ahrens, U.; Diehl, M.; 487 Schmehl, R., Eds.; Green Energy and Technology, Springer: Berlin Heidelberg, 2013; chapter 8, pp. 141–165. 488 doi:10.1007/978-3-642-39965-7_8. 489

18. Fagiano, L.; Milanese, M.; Piga, D. Optimization of airborne wind energy generators. International Journal 490 of Robust and Nonlinear Control 2012, 22, 2055–2083. doi:10.1002/rnc.1808. 491

19. Erhard, M.; Horn, G.; Diehl, M. A quaternion-based model for optimal control of an airborne wind energy 492 system. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und 493 Mechanik 2017, 97, 7–24. doi:10.1002/zamm.201500180. 494

20. Gros, S.; Zanon, M.; Diehl, M. A relaxation strategy for the optimization of Airborne Wind Energy systems. 495 Proceedings of the 2013 European Control Conference (ECC); , 2013; pp. 1011–1016. 496

21. Rawlings, J.B.; Amrit, R. Optimizing process economic performance using model predictive control. 497 In Nonlinear Model Predictive Control. Lecture Notes in Control and Information Sciences; Magni, L.; 498 Raimondo, D.M.; Allgöwer, F., Eds.; Springer: Berlin Heidelberg, 2009; Vol. 384, pp. 119–138. 499 doi:10.1007/978-3-642-01094-1_10. 500

22. Winter, M.; Schmidt, E.; Silva de Oliveira, R. An open-source software platform for AWE systems. Book of 501 Abstracts of the International Airborne Wind Energy Conference 2017; Diehl, M.; Leuthold, R.; Schmehl, Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 11 January 2020 28 of 28 502 R., Eds.; , 2017; p. 140. http://resolver.tudelft.nl/uuid:5c5d9285-059c-42c1-a805-a0f6eae31bcd. Poster 503 available from: http://awec2017.com/images/posters/Poster_Araujo.pdf. 504

23. Sieg, C.; Gehrmann, T.; Bechtle, P.; Zillmann, U. AWEsome: An Affordable Standardized 505 Open-Source Test Platform for AWE Systems. Book of Abstracts of the International 506 Airborne Wind Energy Conference 2017; Diehl, M.; Leuthold, R.; Schmehl, R., Eds.; , 2017; p. 507 140. http://resolver.tudelft.nl/uuid:63733b6f-d860-43ec-9208-9d5d75a08db0. Poster available from: 508 http://awec2017.com/images/posters/Poster_Sieg.pdf. 509

24. Dunker, S. Tether and Bridle Line Drag in Airborne Wind Energy Applications. In Airborne Wind 510 Energy; Schmehl, R., Ed.; Green Energy and Technology, Springer: Singapore, 2018; pp. 29–56. 511 doi:10.1007/978-981-10-1947-0_2. 512

25. Rapp, S.; Schmehl, R. Vertical Takeoff and Landing of Flexible Wing Kite Power Systems. Journal of 513 Guidance, Control, and Dynamics 2018, pp. 1–15. doi:10.2514/1.G003535. 514

26. Fagiano, L.; Zgraggen, A.U.; Morari, M.; Khammash, M. Automatic crosswind flight of tethered wings 515 for airborne wind energy:modeling, control design and experimental results. IEEE Transactions on Control 516 System Technology 2014, 22, 1433–1447. doi:10.1109/TCST.2013.2279592. 517

27. Alvin, K.F.; Park, K. Second-order structural identification procedure via state-space-based system 518 identification. AIAA Journal 1994, 32, 397–406. doi:10.2514/3.11997. 519

28. Dief, T.N.; Fechner, U.; Schmehl, R.; Yoshida, S.; Ismaiel, A.M.; Halawa, A.M. System identification, fuzzy 520 control and simulation of a kite power system with fixed tether length. Wind Energy Science 2018, 3, 275–291. 521 doi:10.5194/wes-3-275-2018. 522

29. Plackett, R.L. Some theorems in least squares. Biometrika 1950, 37, 149–157. doi:10.2307/2332158. 523

30. Dutton, K.; Thompson, S.; Barraclough, B., Adaptive and self-tunning control. In The art of control 524 engineering; Addison-Wesley Longman Publishing Co., Inc., 1997; chapter 11, pp. 560–582. 525

31. Jehle, C.; Schmehl, R. Applied Tracking Control for Kite Power Systems. Journal of Guidance, Control, and 526 Dynamics 2014, 37, 1211–1222. doi:10.2514/1.62380. 527

32. Baayen, J.H.; Ockels, W.J. Tracking control with adaption of kites. IET control theory & applications 2012, 528 6, 82–191. doi:10.1049/iet-cta.2011.0037. 529

33. Burns, R. Advanced control engineering, 1 ed.; Butterworth-Heinemann: London, 2001. 530 doi:10.1016/B978-0-7506-5100-4.X5000-1. 531

34. Hager, W.W. Updating the inverse of a matrix. SIAM review 1989, 31, 221–239. doi:10.1137/1031049. 532

35. Bobál, V.; Böhm, J.; Fessl, J.; Machácek, J. Digital self-tuning controllers: algorithms, implementation and 533 applications; Springer Science & Business Media, 2006. 534

36. Ibrahim, D. Microcontroller based applied digital control; Wiley Online Library: New Delhi, India, 2006; 535 chapter 8. 536

37. Lee, S.G.; Vu, Q.P. Simultaneous solutions of Sylvester equations and idempotent matrices separating the 537 joint spectrum. Linear Algebra and its Applications 2011, 435, 2097–2109. doi:10.1016/j.laa.2010.09.034. 538

38. Schmehl, R.; Fechner, U. Kite power flight data 2011–2015. Data set. 4TU.Centre for Research Data, 2020. 539 doi:10.4121/uuid:5e1fda11-9ae1-4c0a-ab31-4a2c04f70740. 540

39. Salma, V.; Friedl, F.; Schmehl, R. Reliability and Safety of Airborne Wind Energy Systems. Wind Energy 541 2019. doi:10.1002/we.2433. 542

40. Schmehl, R.; Noom, M.; van der Vlugt, R. Traction Power Generation with Tethered Wings. In Airborne 543 Wind Energy; Ahrens, U.; Diehl, M.; Schmehl, R., Eds.; Green Energy and Technology, Springer: Berlin 544 Heidelberg, 2013; chapter 2, pp. 23–45. doi:10.1007/978-3-642-39965-7_2.